Estimation of dense image flow fields in fluids

نویسندگان

  • Rasmus Larsen
  • Knut Conradsen
  • Bjarne K. Ersbøll
چکیده

The estimation of flow fields from time sequences of satellite imagery has a number of important applications. For visualization of cloud or sea ice movements in sequences of crude temporal sampling, a satisfactory nonblurred temporal interpolation can be performed only when the flow field or an estimate thereof is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this paper, we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis of the local energy distribution, which is sampled by using a set of threedimensional (3-D) spatio-temporal filters. The estimated local energy distribution also allows us to compute a confidence measure of the estimated local normal flow. The algorithm, furthermore, utilizes Markovian random fields in order to integrate the local estimates of normal flows into a dense flow field by using measures of spatial smoothness. To obtain smoothness, we will constrain first-order derivatives of the flow field. The performance of the algorithm is illustrated by the estimation of the flow fields corresponding to a sequence of Meteosat thermal images. The estimated flow fields are used in a temporal interpolation scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense Optical Flow Estimation from the Monogenic Curvature Tensor

In this paper, we address the topic of estimating two-frame dense optical flow from the monogenic curvature tensor. The monogenic curvature tensor is a novel image model, from which local phases of image structures can be obtained in a multi-scale way. We adapt the combined local and global (CLG) optical flow estimation approach to our framework. In this way, the intensity constraint equation i...

متن کامل

An Estimation of Multiphase Relative Permeabilities in Reservoir Cores from Micro-CT Data

With significant increase of tomographic equipment power, demand for Prediction relative permeability prediction Predicting in porous media from digital image data. In this work, it is predicted three -phase relative permeabilities with co-applying Darcy’s and Stokes equations in two case studies, namely Bentheimer sandstone and Estaillades limestone which their micro-CT data files were downloa...

متن کامل

A loop-consistency measure for dense correspondences in multi-view video

Many applications in computer vision and computer graphics require dense correspondences between images of multi-view video streams. Most state-of-the-art algorithms estimate correspondences by considering pairs of images. However, in multi-view videos, several images capture nearly the same scene. In this article we show that this redundancy can be exploited to estimate more robust and consist...

متن کامل

Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study

Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system s...

متن کامل

Three-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium

For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1998